PAVEMENT PRESERVATION COATINGS TECHNOLOGY 🧗

TYPE 'S' SLURRY PERFORMANCE

*BASE DESIGN MIX

Variables for Consideration in Design/Build

- 1. **Torsional Traffic:** High wear areas may deteriorate up to 50% faster than straight rolling traffic including cul-de-sacs, roundabouts, turns, intersections etc. Advise that engineer supplement plans to include a minimum 25% higher spread rate in high wear zones.
- Heavy Traffic Loads: Large weight bearing vehicles can add an additional 10% wear factor especially on inclines or intersection approaches.
- 3. **Water:** Heavy rainfall areas can affect coating longevity between 25 50%. Additionally, keep in mind that standing water or cascading water from daily irrigation or subterraneal sources can have a steady impact.
- 4. Chemical/Lubricant Deposits: Any area where oil drippings (intersections, after undulations), hydraulic fluid, anti-freeze or car care/washing chemicals that may be present should be addressed with higher spread rates and/or be treated with a fuel/chemical resistant sealer design. A pre-treatment primer to assure adhesion and longevity may also be needed in existing deposit areas.
- 5. **Pre-existing Asphalt Condition:** Chart above reflects applications to asphalt that have an index of 70 and higher. Pavement conditions that may impact sustainability include surface porosity (loss of fines), dirt/popcorn, large polished aggregates, movement by crack distress or shoving, significant oxidation, bleeding asphalt or other design flaw of original binder and/or stone composite structure. Localized areas of distress may be repaired prior to installation.
- * Top size: 20 mesh aggregate
- ** <15% film residual at terminal figures

